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Abstract

Modeling of Anticancer Drug Delivery by
Temperature-Sensitive Liposomes

by

Vera Franziska Loeser

The University of Wisconsin–Milwaukee, 2017
Under the Supervision of Professor Peter Hinow

Cytotoxic anticancer drugs are used to treat cancer, particularly tumors. These drugs them-

selves do not distinguish between healthy and tumor cells and attack all of them. Conse-

quently physicians and chemists investigate safer ways of delivery that minimize damage to

healthy cells. One of these ways are liposomal formulations of the anticancer drugs. Lipo-

somes are vesicles that encapsulate the drug to shield the healthy parts of the body from the

toxicity of the drugs. Due to the abnormal structure of tumors, especially their leaky vas-

culature, these macromolecules are able to diffuse into the tumor tissue whereas the normal

vasculature prevents them to move into the tissue. After reaching the diseased tissue, the

liposomes release their cargo triggered by a physical or chemical process.

In this thesis, we will investigate those liposomes that are activated upon entering regions

of increased tissue temperature. Developing temperature-sensitive liposomes for targeted

anticancer drug delivery is difficult to realize. The liposomes must be able to move far into

the tumor against the interstitial pressure. The release of the drug must be triggered precisely

in the tumor. We will show that the drug can move further into the tissue by diffusion.

The aim of the mathematical modeling is to improve our understanding of the release and

transport processes involved and (in the future) to optimize the scheduling between tissue

heating and the liposome administration.
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Chapter 1

Introduction

The field of modeling and simulating tumor growth and tumor treatment is sometimes

called ”Mathematical Oncology” and is a growing field combining mathematical sciences

and biomedicine. It provides tools for quantification of key parameters from patient-specific

clinical data as well as customization of cancer treatment using mathematical models (Kuang

et al., 2016). For a better understanding of mathematical oncology a brief definition of cancer

follows: Tumors or neoplasia can be seen as a kind of loss of tissue stability due to mutation,

where the proliferation of cells is “uncontrolled”. Cancer is a malignant tumor, so that the

tumor has the ability to invade the surrounded tissue and to build metastases. Metastasis

describes the ability of a tumor to expand to other parts of the body (Kuang et al., 2016).

Mathematical modeling in general is a great tool for research and industry. The two ma-

jor advantages of modeling are reduced costs and more precise results than those obtained by

physical experiments. Therefore, mathematical modeling complements experimental work.

Particular actions within a complex process can be simulated individually for a better un-

derstanding. In cancer research mathematical modeling of the medical treatment of tumor

cells is a step to reduce the number of experiments in the petri dish or with animals. The

drug and the tumor cells need to be developed first and then implanted into an animal.

This procedure is time consuming and costly and does not guarantee that the setup of the

experiments will succeed. Besides the economical point of view, also ethical issues arise.

On the other hand obtaining results from physical experiments is difficult and expensive

as well, since methods like CT scans and coloring with radioactive elements are necessary.

Some of these procedures are quite sensitive to errors.

Using mathematical modeling, the equations need to be found and parametrized and the
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model needs to be implemented using programming languages. This can be time consuming

and some sophisticated simulations need a lot of computational resources like high perfor-

mance computing cluster. As soon as the simulations are running, multiple tests can be done

without wasting material and the calculations are usually faster than physical experiments.

The solutions of the simulations are obtained immediately without post-processing.

1.1 The Enhanced Permeability and Retention Effect

The enhanced permeability and retention (EPR) effect describes how molecules of certain

sizes tend to accumulate preferentially in tumor tissue than in normal tissue. Hiroshi Maeda

published as one of the first researchers new findings about this effect (Matsumura and

Maeda, 1986; Maeda et al., 2003; Maeda, 2012). Various factors reinforce this effect and will

be described in this chapter.

The EPR effect is a result of the rapid tumor growth and suppressed lymphatic drainage

(Maeda et al., 2003). The tumor requires large amounts of oxygen and nutrients for growth.

This results in the need to recruit the body’s vasculature to the tumor. Tumor vasculature

is different from healthy vasculature in that the endothelial cells have wide fenestrations

(Taurin et al., 2012). The fenestrations result from accelerated growth since the cells cannot

grow and align appropriately. Sustenance is faster through the bigger pores between the

endothelial cells than in healthy tissue because more particles can diffuse into the tumor

tissue at once. On the other hand, the lymphatic system within the tumor is insufficient

since it is not built up appropriately. Thus, the uptake of the tumor tissue will not wash out

as fast as in healthy tissue (Miao et al., 2015). The retention of micromolecular drugs inside

normal tissue is usually a few minutes. In contrast, the retention time in malignant tissue

can last days to weeks (Maeda, 2012).

Targeting drugs in general exploit the fact that a drug has a site of intended action and

should be brought to ill tissue without having a side effect elsewhere. Therefore, a release of

2
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(a) Normal vasculature (b) Leaky vasculature

Figure 1.1: Comparison of the vasculature in normal and in tumor tissue.

the drug in the bloodstream within the tumor would be targeted drug delivery as well. This

also applies to other diseases. However, the EPR effect supports the usage of targeting drugs

by facilitating the import of macromolecular drugs into the tumor tissue, which is unlikely in

normal tissue (Maeda et al., 2003; Maeda, 2012; Wong et al., 2015). Since macromolecules

are not able to diffuse passively into normal tissue, the EPR effect is exploited for deliberate

treatment of tumor cells. Therefore, the likelihood for healthy cells to be killed by the

cytotoxic drug decreases, while it is more likely that the drug treats the tumor instead of

passing the tumor.

Disadvantages of the EPR effect are a higher interstitial fluid pressure (IFP) inside the

tumor and thus enhanced diffusion of molecules out of the tumor (Wong et al., 2015; Minch-

inton and Tannock, 2006). Because a lot of nutrients and fluid can move into the tumor and

remains inside, the interstitial pressure within the tumor is much higher than the vascular

pressure outside of the tumor. The interstitial pressure gradient creates a outward directed

velocity field within the tumor that drives the uptake from the core of the tumor back to-

wards its edge (Baxter and Jain, 1989). As a result the EPR effect allows transport both

into and out of the tumor.

3



www.manaraa.com

DOX

hydrophilic

hydrophobic

Figure 1.2: Structure of a liposome

1.2 Targeted Drug Delivery in solid tumors

Macromolecules with a molecular weight > 45 kDa will result in a selective uptake mainly

within the tumor since the fenestrations of normal tissue are too small (Maeda et al., 2003).

In normal tissue the endothelial cells are aligned close to each other, so that mainly small

molecules diffuse through the fenestrations. There are also transporters in the endothelial

cells for active transport that can even work against a gradient (Saxena et al., 1991), but

in this thesis we focus on the passive transport by diffusion through the fenestrations. The

macromolecules will mainly stay within the vasculature without passing the barrier into the

tissue. The movement of the macromolecules through the fenestrations into the tumor tissue

is depicted in Fig. 1.1.

The encapsulation of the cytotoxic anticancer drugs within liposomes primarily shields

the drug but as a side effect it increases its size. One representative of these anticancer drugs

is Doxorubicin (DOX), whose interference with DNA leads to cell death. Their adverse side

effects include cardiomyopathy which can lead to heart failure and suppression of white blood

cell production in the bone marrow (Hinow et al., 2016). These side effects can be reduced

by targeted drug delivery.The liposomal formulation of DOX became increasingly common,

for example as Doxil® or ThermoDox®. The structure of these liposomes is depicted in

Fig. 1.2. They are spherical vesicles having the drug surrounded by at least one lipid bilayer.

This layer is again surrounded by a coat which protects the liposome against destruction by

4
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the immune system. The size as well as the shape of the liposomes affect the biodistribution

and uptake, in addition to circulation time of molecules (Arnida et al., 2011). Therefore,

targeted drugs are designed as bigger liposomes carrying the actual drug into the tumor cell,

where they release their cargo.

The release is triggered by a chemical or physical reaction such as heat (Gasselhuber et al.,

2010; Kneidl et al., 2014), ultrasound (Staruch et al., 2011; Rizzitelli et al., 2015) or the pH

difference between healthy tissue and the more acidic malignant tissue (Liu et al., 2014).

For example, the low temperature-sensitive liposomal formulation of Doxorubicin (LTLD)

releases its cargo in a high concentration when it is heated to temperatures between 39.5 ◦C

and 42 ◦C (Zagar et al., 2014). The tissue can be heated via radio frequency tumor ablation

(RFA) (Gasselhuber et al., 2010) or ultrasound mediated hyperthermia (Gasselhuber et al.,

2012a).

Our goal is to create an easily expandable model that can handle several targeted drug

delivery methods. Therefore, we base on the work of Stapleton et al. (2013) and extend

their model with the drug release using an adjustable “transfer function”. They proposed a

model for the liposome transport in solid tumors based on biophysical transport equations.

These equations describe the pressure driven fluid flow across blood vessels and through

the tumor interstitium. Their parametrization results from three preclinical animal tumor

models. Within this thesis, the release of the drug in our mathematical model is simulated

using temperature-sensitive liposomes based on the results of Gasselhuber et al. (2010).

They proposed a spatio-temporal multicompartmental pharmacokinetic model to describe

the transport and release of the drug from the low temperature-sensitive liposomal formu-

lation of Doxorubicin into the tumor plasma space of a human. They parametrized their

model based on data for human lung cancer cells.

5
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1.3 Structure of this Thesis

In this thesis we study the anticancer drug delivery using temperature-sensitive liposomes.

The relevant properties of tumors and anticancer drugs were explained in detail in Ch. 1 to

create a solid background knowledge and to aid in the understanding of the mathematical

model. In Ch. 2 we derive a mathematical model to improve the understanding of the

ongoing processing during targeted drug delivery. In Ch. 3 we touch upon the numerical

methods and the results of the numerical simulations will follow in Ch. 4. In Ch. 5 we will

summarize the work in a discussion and prospects will be given.

6
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Chapter 2

The Mathematical Model

We consider an isolated model tumor with spherical symmetry that is homogeneously per-

fused by blood vessels and lacks lymphatic drainage (Baxter and Jain, 1989; Stapleton et al.,

2013). So the microscopic elements as blood vessels, interstitial tumor matrix and individual

cells are not modeled explicitly. After a suitable normalization by the tumor radius R, the

spatial variable is in the interval r ∈ [0, 1].

A schematic depiction of the model of drug release of temperature-sensitive liposomes

is given in Fig. 2.1. Liposomes are delivered from the blood plasma compartment. We

assume that the liposome injection rapidly equilibrates in the plasma, so an ordinary differ-

ential equation is sufficient to describe their concentration within the blood plasma. Their

concentration c(t) follows simple first order kinetics

dc

dt
= −kc, c(0) = c0. (2.1)

Here k denotes the rate of clearance from the plasma (Ishida et al., 2002) and results from

the assumption that the liposomes have a half-life of 24 hours. c0 is the initial concentration.

As long as the vascular pressure pv is higher than the interstitial pressure pi the liposomes

are able to move from the blood plasma into the tumor tissue. Since the tumor volume is

sufficiently small in comparison to the blood volume the passing of the liposomes into the

tumor does not impact c significantly. As long as the temperature surrounding the liposomes

is sufficiently high the liposomes can release their cytotoxic cargo. After the liposomes release

their cargo they are no longer considered. The concentration of the drug inside the tumor

is denoted as w(r, t).

Baxter and Jain (1989) derived an analytic steady-state solution for the IFP for an

7
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Tumor

a)

Liposomes in

blood

c

A

if pv > pi

b)

u

if T > 38

w

Figure 2.1: Scheme of temperature-sensitive liposomes. a: Transport of temperature-
sensitive liposomes across the blood vessel barrier as long as the vascular pressure is higher
than the interstitial pressure. b: Release of the liposome’s cargo as long as the temperature
within the tumor is sufficiently high.

isolated tumor without extravascular binding. Based on their aforementioned assumptions

the interstitial fluid pressure is given by

pi(r) = pi,max

(
1− sinh(αr)

r sinh(α)

)
, (2.2)

where pi,max is the maximal IFP. Stapleton et al. (2013) report values between 3.5 -

5.7 mmHg, 1.7 - 4.7 mmHg and 4.56 - 42.3 mmHg from experiments of ME180, H520

and VX2 tumors, respectively. These experiments were performed in mice (ME180, H520)

and rabbits (VX2). α is a dimensionless parameter that is defined as the ratio of vascular

to interstitial permeability. A smaller value of α means that the interstitial permeability

is relatively high, whereas a larger value for α corresponds to a relatively low interstitial

8
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permeability. Therefore, a smaller value of α means that macromolecules can move more

easily into the tumor tissue.

The interstitial fluid velocity is obtained from Darcy’s law,

v(r) = −K∂pi
∂r

=
Kpi,max
R

αr cosh(αr)− sinh(αr)

r2 sinh(α)
, (2.3)

where K denotes the hydraulic conductivity. This physical constant describes the permeabil-

ity of the interstitium. This velocity field drives the transport of liposomes in the interstitial

region of the tumor. Therefore v(R) > 0 on the edge of the tumor.

We assume a unidirectional flow of the liposomes such that the rate of transvascular

exchange is proportional to the difference between vascular pressure pv and pi. Since the

IFP is increasing towards the center of the tumor whereas pv is assumed constant throughout

the tissue, the exchange is only possible as long as the interstitial pressure is smaller than

the vascular pressure. The concentration of the liposomes u(r, t) ∈ (0, 1)× (0, te), with te as

the end of the time interval, is given by

∂u

∂t
=

1

Vr
cfc(1− σ)(pv − pi) ·H(pv − pi)− θl

∂

∂r
(uv)− h(T (r, t))u in (0, 1)× (0, te). (2.4)

The initial condition and Neumann boundary condition, respectively, are given by

u(r, 0) = u0(r) for r ∈ Ω := (0, 1), (2.5)

∂u

∂r
= 0 on Γ := ∂Ω× (0, te). (2.6)

If the IFP is higher than pv, no transvascular exchange can occur. Therefore, the positivity

is modeled by a Heaviside step function H. The only source of liposomes in the tumor is

the plasma perfusing the tumor. Here T (r, t) denotes the tissue temperature (which is also

assumed to be spherically symmetric), and h is called a “transfer function”, similar to that

in Hinow et al. (2016). Vr is the ratio of the tumor volume to the blood volume. It ensures

conservation of mass as the liposomes move between compartments of different volumes. The

blood volume is 5 L whereas the tumor volume is 1 cm3 and therefore significantly smaller.

9
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Vr is given by

Vr =
3 · 5

4π · 103
≈ 10−3. (2.7)

The constant fc denotes the capillary filtration coefficient, which is a constant of proportion-

ality between capillary surface area and capillary hydraulic conductivity, and describes the

permeability of the capillaries. The constant σ denotes the filtration reflection coefficient,

which describes the fact that molecules bigger than a specific threshold are retained by the

semipermeable membrane. Although the permeability is enhanced within tumors not every

molecule will diffuse into the tumor tissue.

Stapleton et al. (2013) describe the fractional rate of liposome transport through intersti-

tium to fluid flow as θl = 0.5. This results from the inertia of the relatively large liposomes

within the fluid. As the liposomes are rather large particles of molecular weights in the range

of 100MDa (Stapleton et al., 2013), they are not subject to diffusion. This is different for

the drug that is released from them. The concentration of the drug w(r, t) ∈ (0, 1)× (0, te)

within the tumor is governed

∂w

∂t
=

∂2

∂r2
(Dw)− θd

∂

∂r
(wv) + βh(T (r, t))u. (2.8)

The initial condition and Neumann boundary condition, respectively, are given by

w(r, 0) = w0(r) for r ∈ Ω, (2.9)

∂w

∂r
= 0 on Γ := ∂Ω× (0, te). (2.10)

The drug is subject to transport and diffusion, and is supplied by the liposomes as they enter

the heated region. The diffusion coefficient D, as found in Fick’s second law of diffusion,

describes the proportionality between the molar flux due to molecular diffusion and the

gradient in the concentration. Since the tissue is heated up the diffusivity depends on the

status of the tissue and therefore on the temperature: If the tissue is already ablated, the

diffusivity decreases significantly within the necrotic tissue (Gasselhuber et al., 2010). For

simplicity, we still assume the D to be constant. Suggestions for improvement can be found

10
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in the discussion in Ch. 5.

The fractional rate of the transport of drug molecules through interstitium due to fluid

flow is described by θd = 1. This is an initial guess and needs to be parametrized more

precisely. The constant β > 0 is the yield of drug molecules supplied by one liposome.

At the moment, Eq. 2.8 models only the release of the drug and its motion through the

tumor. In the future, the metabolism and uptake of the drug need to be included. Ch. 5

will give more details on the improvement of the model.

The total amount of liposomes within the tumor is givenby the integral

ū(t) =

∫
V

u(r, t)dV =

∫ R

0

u(r, t) · 4πr2dr. (2.11)

The parameters and their values used within the simulations are summed up in Table 2.1.

11
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Parameter Unit Interpretation Value(s) Reference

pi,max mmHg maximal value of IFP 19.8 (Stapleton et al., 2013)
pv mmHg vascular pressure 10 -
R cm radius of tumor 1 -
α - ratio of vascular to interstitial per-

meability
1; 3; 5; 10; 25 (Stapleton et al., 2013)

k s−1 rate of liposome clearance from
the plasma

8.3× 10−6 (Ishida et al., 2002)

c0 pmol · cm−3 Initial plasma concentration of li-
posomes

0.5 (Hinow et al., 2016)

K cm2 ·mmHg−1 · s−1 hydraulic conductivity or intersti-
tial permeability

662× 10−7 (Stapleton et al., 2013)

θl - fractional rate of liposome trans-
port through interstitium to fluid
flow

0.5 (Stapleton et al., 2013)

σ - filtration reflection coefficient 0.19 (Stapleton et al., 2013)
fc mmHg−1 · s−1 capillary filtration coefficient 1088× 10−7 (Stapleton et al., 2013)
Vr - relation of tissue to blood volume 10−3 -
D cm2 · s−1 Diffusion coefficient of DOX 6.7× 10−7 (non ablated) (Gasselhuber et al., 2010)
θd - fractional rate of DOX transport

through interstitium to fluid flow
1 -

β - drug loading coefficient of DOX 1.3× 10−7 (Hinow et al., 2016)

Table 2.1: Summary of all parameters for numerical approximation

12
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Chapter 3

Numerical Methods

Eq. (2.4) is an example of an Advection-Reaction Equation (see Chapter 3.1) and Eq. (2.8) is

an example of an Advection-Reaction-Diffusion Equation (see Chapter 3.2). In this thesis, we

use the Strang Splitting method for the numerical approximation of these equations, which

is a representative of an Operator Splitting method (Strang, 1968; Hundsdorfer, 2000). In

these methods the equations are broken up in their physical components and then these

components are solved sequentially. This method can be applied when one component is

stiffer than the other or to separate several dimensions. Stiffness describes equations that

cannot be solved with an explicit method since at least one component of the equation decays

much faster than the other components.

This chapter analyses the numerical methods used for each equation generated by the

Operator Splitting Method (see Appendix A) .

3.1 The Advection-Reaction Equation

Eq. (2.4) is an example of an Advection-Reaction equation. Generally speaking the reaction

term in this equation creates sources or sinks of the quantity, whereas the advection term

describes the transport of this quantity by bulk motion.

Applying the Strang splitting described in Appendix A, we can write

∂u

∂t
=

1

Vr
cfc(1− σ)(pv − pi) ·H(pv − pi)− h(T )u︸ ︷︷ ︸

reaction term

− θl
∂

∂r
(uv)︸ ︷︷ ︸

advection term
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tn tn+ 1
2

tn+1

u∗

u∗∗

u∗∗∗

Figure 3.1: Scheme for the Strang Splitting of u

as

∂u∗

∂τ
=

1

Vr
cfc(1− σ)(pv − pi) ·H(pv − pi)− h(T )u∗ for tn ≤ τ ≤ tn+ 1

2
(3.1)

∂u∗∗

∂τ
= −θl

∂

∂r
(u∗∗v) for tn ≤ τ ≤ tn+1 (3.2)

∂u∗∗∗

∂τ
=

1

Vr
cfc(1− σ)(pv − pi) ·H(pv − pi)− h(T )u∗∗∗ for tn+ 1

2
≤ τ ≤ tn+1 (3.3)

with

u∗(tn) = un, u∗∗(tn) = u∗(tn+ 1
2
), u∗∗∗(tn+ 1

2
) = u∗∗(tn+1).

This results in u(tn+1) = u∗∗∗(tn+1). Here the equation was split in a physical manner. First

the reaction term will be evaluated and in the next step the transport will be calculated.

The scheme is depicted in Fig. 3.1.

Eq. 3.1 and 3.3 are solved by the first representative of an L-stable method (definitions

on stability can be found in Appendix B), the implicit Euler method

uτ+1 = uτ + ∆τg(r, τ + ∆τ, uτ+1) (3.4)

g(r, τ + ∆τ, uτ+1) =
1

Vr
c(τ + ∆τ)fc(1− σ)(pv − pi) ·H(pv − pi)− h(T )uτ+1. (3.5)

The implicit Euler method was implemented by using a fixpoint iteration with an initial

step using the explicit Euler method. With this method no system of equation needs to be

solved. The implicit Euler method has order O(∆t). The term O(∆t) denotes a quantity

whose size is proportional to ∆t or even smaller.
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Eq. 3.2 was solved by using the first order upwind differencing scheme, which takes the

flow direction into account. This discretization method creates the following equation which

needs to be implemented:

uτ+1
r =

(
1− θl∆t

∆r
vr

)
uτr +

θl∆t

∆r
vr−1u

τ
r−1 if θl ≥ 0. (3.6)

The advantages of this upwind differencing method are the properties of positivity and local

preservation of mass and uniform stability. The method does not prevent a loss of mass due

to outflow out of the domain. The disadvantage is artificial diffusion within the advection

term, which could be eliminated by implementing a more complex method (Quarteroni et al.,

2010, Remark 12.6). The artificial diffusion develops, because the mass within one grid cell

moves only partly into the next grid cell. A method which attacks this issue will be discussed

in Ch. 5.

The upwind differencing scheme is stable as long as the Courant-Friedrichs-Lewy condi-

tion is fulfilled. This condition describes the convergence behavior of xi in its neighborhood.

In this case the condition says that xi−θl∆t ≤ xi+1, otherwise the method is not convergent.

Since xi = i∆r, the condition for the upwind method is

0 ≤ θl∆t

∆r
≤ 1 for θl ≥ 0 (3.7)

3.2 The Advection-Reaction-Diffusion Equation

Eq. (2.8) is an example of an Advection-Reaction-Diffusion equation. In addition to the

structure described in the previous Chapter 3.1 a diffusion term occurs in this type of equa-

tion. Applying the Strang splitting described in Appendix A, we can write

∂w

∂t
= βh(T )u︸ ︷︷ ︸

reaction term

−θd
∂

∂r
(wv)︸ ︷︷ ︸

advection term

+
∂2

∂r2
(Dw)︸ ︷︷ ︸

diffusion term
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as

∂w(1)

∂τ
= βh(T )ut for tn ≤ τ ≤ tn+ 1

2
(3.8)

∂w(2)

∂τ
= −θd

∂

∂r

(
w(2)v

)
for tn ≤ τ ≤ tn+ 1

2
(3.9)

∂w(3)

∂τ
=

∂2

∂r2
(Dw(3)) for tn ≤ τ ≤ tn+1 (3.10)

∂w(4)

∂τ
= −θd

∂

∂r

(
w(4)v

)
for tn+ 1

2
≤ τ ≤ tn+1 (3.11)

∂w(5)

∂τ
= βh(T )u for tn+ 1

2
≤ τ ≤ tn+1 (3.12)

with

w(1)(tn) = wn, w(2)(tn) = w(1)(tn+ 1
2
), w(3)(tn) = w(2)(tn+ 1

2
),

w(4)(tn+ 1
2
) = w(3)(tn+1), w(5)(tn+ 1

2
) = u(4)(tn+1).

The solution of the reaction equation for the drug can be found analytically. Since the

right hand side does not depend on w, the equation is linear and can therefore just be

multiplied by ∆τ to evaluate the reaction. The reaction equation can also be calculated by

the implicit Euler method as described in Ch. 3.1. This becomes important if the reaction

equation would be extended by other terms like the uptake of the drug or metabolism. Then

the reaction term would also depend on w itself and may not be solved by simple integration.

For the advection term the upwind method is used as described in Ch. 3.1. The diffusion

term is approximated by the Crank-Nicolson method (Grossmann et al., 2007, Section 2.6.1).

This method is a combination of a half implicit and a half explicit Euler step and can be

derived as follows:

∂w

∂t
=

1

2

(
∂2Dw

∂t2

∣∣∣∣
t

+
∂2Dw

∂t2

∣∣∣∣
t+1

)
=

1

2

(
Dwtr+1 − 2Dwtr +Dwtr−1

∆r2
+
Dwt+1

r+1 − 2Dwt+1
r +Dwt+1

r−1

∆r2

)
.

(3.13)

Reordering with all wt+1 on the left hand side we get the final form of the Crank-Nicolson
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method

− κDwt+1
r+1 + (1 + 2κD)wt+1

r − κDwt+1
r−1 = −κDwtr+1 + (1− 2κD)wtr + κDwtr−1, (3.14)

with

κ =
∆t

2∆r2
. (3.15)

This implicit method results in a tridiagonal matrix, which needs to be calculated in each time

step. The advantage of this method is that the system of equations can be solved within O(r)

work. This makes the Crank-Nicolson method basically as efficient as an explicit method.

With a series expansion in space and in time it can be shown that the Crank-Nicolson

method is second order accurate in space and in time (Hundsdorfer, 2000). For stability the

Courant-Friedrichs-Lewy condition is fulfilled if

∆t

∆r2
≤ 1

2
. (3.16)

If this condition is violated, oscillations may occur.
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Chapter 4

Results

The numerical methods were implemented using the Open Source computing language

python (Python Software Foundation, 2017). The source code is attached in Appendix C.

4.1 Transfer function

The transfer function was determined from Gasselhuber et al. (2010, Figure 2). They exper-

imentally determined the release of Doxorubicin by heating human blood plasma in single

cuvettes to 25℃ and 37 − 47℃ for at least 5 minutes. A liposome suspension (10 µL,

2 mg/mL DOX) of ThermoDox® (Celsion, Columbia, MD) was added to 750 µL of the

heated plasma. The fluorescence intensity caused by the DOX release was monitored by a

spectrofluorometer. A more precise description of the methods and materials can be found

in Gasselhuber et al. (2010). We focused on the results depicted in Gasselhuber et al. (2010,

Figure 2).

We are especially interested in the approximately linear slope within the first second (see

Fig. 4.1). Therefore the release in Gasselhuber et al. (2010, Figure 2) is evaluated after one

second with the slope taken from the gradient triangle. We consider only those temperatures

which force the liposomes to release at least 50 % of their cargo, so the gradients were fitted

to a piecewise linear function (see Fig. 4.1) dependent on the temperature.

h(T ) =


0 T ≤ 38

0.3789(T − 38) 38 < T < 39

0.0176T − 0.3107 39 ≤ T.

(4.1)
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Figure 4.1: Piecewise linear fitting of the release of DOX. The data points base on Gassel-
huber et al. (2010, Figure 2)
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Figure 4.2: IFP and vascular pressure
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Figure 4.3: Interstitial Velocity

4.2 Pressure and Velocity

We assume a constant vascular pressure so that the transvascular exchange is driven by the

IFP. This relation is depicted in Fig. 4.2. The liposomes cannot pass the point where the

IFP outweighs the vascular pressure. However, the drug can diffuse further into the tumor.
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Figure 4.4: Temperature distribution within the tumor.

4.3 Temperature distribution

We assume a temperature field that has the value 50 ◦C in the center of the tumor and

decreases to 36 ◦C body temperature at the edge of the tumor. We approximate the decay of

the temperature similar to the interstitial pressure so that we use a hyperbolic sine, whereas

the temporal aspect is taken from Gasselhuber et al. (2010, Figure 9). The exponential decay

of the temperature was taken into account

T (r, t) = Tr · Tt + T0

=

(
20− 20 sinh(3r)

r sinh(3)

)
e−λt + 36,

(4.2)

where r is the normalized spacial component and t is the time. The exponential decay

constant λ = 8.32 h−1 was estimated from the half-life of ca. 5 minutes (Gasselhuber et al.,

2010, Figure 9). The function is depicted in Fig. 4.4.
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Figure 4.5: Concentration of liposomes u in a steady-state temperature field in absence of
transport. The transition zone of the drug release is marked by dashed lines.
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Figure 4.6: Concentration of liposomes u in a time dependent temperature field in absence
of transport.

4.4 Liposome concentration

4.4.1 Reaction term

At first, we a look at the reaction equation on its own (Fig. 4.5) in the steady state of the

temperature field, such that T (r, t) = T (r, 0). Although the assumption of the steady state
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is not realistic, the results from that calculation help to understand the impact of both terms

within the reaction term.

The temperature increases towards the center of the tumor and the transition zone for

the drug release (38 − 39 ◦C) is marked by a dashed line in Fig. 4.5. In the beginning,

the liposomes enter the tumor at a rate proportional to the pressure difference. As soon

as they reach the transition zone the liposomes start to release their cargo such that the

concentration of liposomes decreases towards the center of the tumor. This explains the

steep slope at approximately r = 0.9. With α = 3 this structure of the individual terms is

still visible, but the more α increases, the more the slope becomes uniformly and steep.

Since the temperature of the tissue cools down quickly with time, the liposomes decay

in reality at a lower rate (Fig. 4.6). So in the realistic simulation the reaction term will be

dominated by the exponential decay of the temperature and of the liposome concentration

in the plasma.

4.4.2 Advection term

To examine the advection term, an initial block of higher concentration of liposomes was set

on the domain in the interval [0.225, 0.275] and [0.725, 0.775]. These locations are chosen

for analytic purposes and are not quite appropriate. The pure advection becomes visible

without the differences in concentration due to the reaction terms (Fig. 4.7). This part of

the analysis is important to show the impact of the interstitial velocity v (Fig. 4.3) on Eq. 2.4.

Additionally the significant artificial diffusion resulting from the upwind differencing scheme

becomes visible.

Since the velocity is increasing towards the edge of the tumor, the peaks of concentration

are not symmetric but faster moving at the right end than at the left end. This increases

the artificial diffusion of the upwind differencing method even more. The material tends

to stream out of the tumor, although the likelihood depends on the distance, which it can

pass during that amount of time. Therefore the likelihood of liposomes streaming out of the
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Figure 4.7: Advection term of u

tumor depends on α.

Notable is the peak of advection in the plot α = 3 (Fig. 4.7b). If α has a smaller value,

then the velocity is too weak to move the material far away. With higher values of α the

magnitude of velocity decreases to some extent in comparison to those values with lower α,

but towards the edge of the tumor it increases more rapidly.

4.4.3 Full equation

The impact of α is even more visible when we have a look at how far the liposomes penetrate

the tumor. Since the IFP depends on α, so does the reaction term. The liposomes cannot
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Figure 4.9: Total amount of liposomes over t

pass the point where the IFP outweighs the vascular pressure (Fig 4.2 and Fig. 4.8).

The total amount of liposomes within the tumor can be calculated by integrating u

as described in Eq. 2.11 and is depicted in Fig. 4.9. This relatively high concentration

in comparison to the initial concentration c0 within the plasma results from the change

of volume. The blood volume is ca. 5 L whereas the tumor volume is only 1 cm3. The

concentration is plotted on a logarithmic scale such that the decay is in fact exponential,

resulting from Eq. 2.1.

4.5 Drug concentration

4.5.1 Diffusion term

Drug molecules are subject to diffusion. The diffusion acts autonomously since it does not

depend on the liposome concentration u or the ratio of vascular to interstitial permeability

α. Due to the concentration within w the drug molecules diffuse toward areas with less

concentration as depicted in Fig. 4.10. This motion is independent of the flow directions

such that the drug can move further into the tumor due to diffusion and especially pass the

point where the IFP outweighs the vascular pressure.
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Figure 4.10: Diffusion term of w
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Figure 4.11: Drug distribution over r
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Figure 4.12: Total amount of drug over t

4.5.2 Full equation

For the temperature distribution we assume that the tumor is heated by a probe located in

the center of the tumor. If the liposomes cannot move far enough into the tumor such that

their temperature reaches a specific threshold, no drug can be released. This is the reason

why in the case of α ≥ 25 no drug concentration can be found in the tumor. Looking at the

distance the drug moves into the tumor, the impact of the diffusion becomes clearly visible.

The reaction term just generates the drug in place, whereas the advection term moves the

drug outward. However, integrating over the time (Fig 4.11), the drug moves further inward

than the liposomes (Fig. 4.8) due to the diffusion.
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The distribution of the total amount of drug within the tumor can be calculated by

integrating w as described in Eq. 2.11 and is depicted in Fig. 4.12. On the one hand, the

amount of drug in the tumor is impacted by the amount of liposomes in the tumor. If less

liposomes are present then less drug molecules can be released. On the other hand, the

release of the drug is impacted by the temperature since the release rate h depends on the

temperature. Thus, the release depends on the time. When the tumor cools down, less drug

can be released from the liposomes. Since α controls the depth of the import of liposomes

and the velocity and consequently the advection it has also an impact on the retention time

of the drug within the tumor. An increasing α leads to a shorter retention time.

Notable is the decay of w with increasing α as described in the beginning of this section.

The influence of α on the concentration of the drug becomes obvious, when w is plotted

three-dimensional with respect to time and space (Fig. 4.13). Although the difference of α

is not big, the difference of the drug concentration is clearly affected.
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Figure 4.13: Concentration of the drug with respect to space and time
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Chapter 5

Conclusion

5.1 Summary

The simulation of tumor growth and tumor treatment is one way for a better understanding

of the particular components in these processes. Precise measurements of drug concentration

in tumors requires a lot of pre- and post-processing steps, whereas mathematical simulation

gives immediate results. On the other hand, mathematical simulations are only as reliable

as the model. The more physical processes and side effects are neglected the less precise the

simulation results. After setting up a mathematical model, the impact of single terms on

the system can be analyzed.

We have set up a mathematical model that represents the delivery of temperature-

sensitive liposomes and the release of their cargo within tumor tissue. These liposomes

are spherical vesicles containing the drug and release their cargo in regions of increased tem-

perature. We have modeled the elevated interstitial pressure and the interstitial velocity

based on the model of Baxter and Jain (1989). For the concentration of the liposomes we

extended the model given in Stapleton et al. (2013) and coupled that concentration with the

concentration of the drug itself. The model for the drug release follows the idea of Hinow

et al. (2016), where the drug is released by a transfer function. Therefore, we implemented

some results for thermo-sensitive drug delivery referring to Gasselhuber et al. (2010). Our

current model can be improved or extended as described in Ch. 5.2.

The parametrization of the mathematical model relies on parameters from available liter-

ature. A specific threshold exists for temperature-sensitive liposomes causing them to release

their cargo as shown in Fig. 4.1 (Gasselhuber et al., 2010, Figure 2). This threshold is usu-
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ally achieved by heating such as radio frequency tumor ablation. The temperature-sensitive

liposomes are used to complement the tumor treatment by RFA. Around the area of ab-

lated tissue the tumor will be treated additionally by the drug released from the liposomes

(Gasselhuber et al., 2010).

The release of the drug depends on the temperature which itself has a temporal and

a spatial component. We varied the ratio of vascular to interstitial permeability α in the

simulation. As α increases the retention time of the drug within the tumor decreases due to a

faster advection. An improvement of the efficiency of the treatment could be an incremental

heating of the tumor, such that the liposomes have a better chance to release their cargo.

Developing temperature-sensitive liposomes for targeted anticancer drug delivery is dif-

ficult to realize. The liposomes must be able to move far into the tumor although the

interstitial pressure counteracts the transport of the liposomes. The release of the drug must

be triggered easily enough so that the tumor can be treated sufficiently. However, liposomes

outside the tumor should tightly seal the drug to prevent toxic side effects. The diffusion of

the drug molecules improves the penetration depth of the tumor.

5.2 Discussion

The mathematical model as well as the numerical approximation can be improved in the

future. The most important step in the future is the improvement of the model of the drug.

On the one hand, the drug uptake from the cells is not considered yet. This may impact

the amount of concentration as well as the behavior of the drug molecules within the tumor

in view of the advection and diffusion. The actual intention of the drug is the treatment

of tumor cells. The decomposition and metabolism of the drug is not considered yet. An

example for the metabolism can be found in Hinow et al. (2016). Those drug molecules

which are not taken up from the tumor cells will start to dissociate after some time. After

that they cannot treat the tumor cells any longer and should be neglected in the further
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calculations.

Currently this model simulates the drug delivery within an isolated tumor. In the future,

we can extend this model for tumors surrounded by healthy tissue. This will impact the

interstitial pressure and the interstitial velocity at the edge of the tumor as well as the

temperature field since the transition between the tissues has to be continuous.

The Operator Splitting method has an order of O(∆t2). However, this order can only be

maintained if the numerical methods used in combination with the splitting are of at least

the same order. Therefore the implicit Euler method and the upwind differencing method

(both explained in Ch. 3.1) need to be replaced by more accurate methods. For sufficiently

precise results the time step size and the grid resolution have to be very small which lead to

long simulation times. By more precise numerical methods the number of calculations can

be reduced since bigger resolutions will result in likewise precise simulation results.

The L-stable implicit Euler method is the first representative of the backward differenti-

ation formulas and is sometimes abbreviated as BDF1. It is the first representative since it

only uses one previous step. A suggestion for an improvement is using the second backward

differentiation formula (BDF2), which has an order of O(∆t2) and uses the two previous

steps for the calculation of the next step. So instead of Eq. 3.4 we receive the following

differentiation:

uτ+1 =
4uτ − uτ−1 + 2∆τg(r, τ + ∆τ, uτ+1)

3
, (5.1)

where g(r, τ + ∆τ, uτ+1) is still defined by Eq. 3.5.

Many numerical methods exist to approximate the advection equation. Therefore, the

upwind differencing method could be replaced by a more accurate method. One of these

methods was introduced by Egan and Mahoney (1972). This method reduces the effects of

the artificial diffusion by advecting the subgrid center of mass and the subgrid spread of the

molecules along with the molecules themselves. This counteracts the error of the advection

that the molecules just move partly into the next grid cell. The previously mentioned
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r r+1

(a) Method of Egan and Mahoney (1972)

r r+1

(b) Upwind differencing

Figure 5.1: Comparison between the method of Egan and Mahoney (1972) and upwind
differencing

upwind differencing method stores only the amount of concentration within one grid cell.

The amount within one cell decreases while it advects into the next cell. The decrease of

the concentration peak in this simulation due to numerical diffusion is showed in Fig. 4.7.

Especially in the cases of a ratio of vascular to interstitial permeability of α = 3 or α = 5 the

diffusion is significant. However, the peak concentration should not decrease and the width

of the mass should not spread (Fig. 5.1). Because of the data storage of the method by Egan

and Mahoney (1972) the previous shape of the concentration curve can be restored from

the additional information. In a one-dimensional case with constant velocity this method

is exact. The problem with this method is the complex data storage, since not only the

concentration, but also the center of mass and the distribution of the molecules need to be

stored. The reconstruction is complex and so the current source code of the simulation needs

modification.

Instead of approximating the temperature by Eq. 4.2, thermodynamics, e. g. as found in

Gasselhuber et al. (2010), could be implemented into the model. Consequently a new partial

differential equation (PDE) has to be solved and the results are used for the calculation of

Eq. 2.4 and Eq. 2.8. This will improve the accuracy of the reaction terms in both equations

and therefore the whole mathematical model.

Also some constants may be improved by a sufficient modeling of their component. For
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example, the diffusion coefficient of the drug is dependent on the status of the tissue. Gas-

selhuber et al. (2010) refer to two different diffusion constants. Within the ablated tissue,

the drug diffusion constant is smaller than in the non-ablated tissue. Therefore, the diffusion

coefficient D can be extended as D(T (r, t)). The simulation itself can already calculate the

diffusion with a continuous function as diffusion coefficient. In the future the function needs

to be set up and parametrized. The value of the diffusion constant has to be a continuous

function to avoid discontinuity in the solutions. Additionally, the fractional rate of liposome

transport through the interstitium to fluid flow θl, as well as θd for drug transport, require

further investigations. θl was taken from Stapleton et al. (2013) although it is not obvious

how they received this value. A value for θd (currently θd = 1) needs to be estimated in the

same way. Overall, our parametrization was taken from the literature. In a next step the

parametrization could be verified or improved by physical experiments.

Although the assumption of radial symmetry is valid, the results would be more realistic

if the mathematical model would be extended to all three dimensions. Therefore, the model

itself needs some adjustments as well as the implementation for the simulation.
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Appendix A

The Operator Splitting Method

The idea of operator splitting can be explained most easily by considering a linear ordinary
differential equation (ODE) system like

y′(t) = Ay(t), (A.1)

with the analytical solution

y(tn+1) = eA(tn+1−t0)y(t0) = e∆tAy(tn). (A.2)

Here A denotes a matrix containing the coefficients for the system of equations and ∆t de-
notes the time step size.

If A can be split into A =
∑n

k=1 Ak, then we can solve a system of sub-problems

y′(t) = A1y(t)

...

y′(t) = Any(t), (A.3)

such that the analytical solution (Eq. (A.2)) can be approximated by

y(tn+1) = e∆tAn . . . e∆tA1y(tn). (A.4)

This method is the simplest splitting method with an convergence order of O(∆t). The term
O(∆t) denotes a quantity whose size is proportional to ∆t or even smaller. Definitions are
summarized in Appendix A on page 38.

To achieve more accuracy and symmetry, the order of the Ak can be interchanged (Strang,
1968). Therefore the sequences of the sub-problems will be reversed, such that

y(tn+1) =
(
e

∆t
2
An . . . e

∆t
2
A1

)(
e

∆t
2
A1 . . . e

∆t
2
An

)
y(tn)

= e
∆t
2
An . . . e

∆t
2
A2e∆tA1e

∆t
2
A2 . . . e

∆t
2
Any(tn).

(A.5)

By applying a series expansion around y(t + ∆t) or using the Baker-Campbell-Hausdorff
formula (Hundsdorfer, 2000) and the Zassenhaus formula (Casas et al., 2012), the local and
global truncation error can be obtained. Overall, the operator splitting using the Strang
method has an accuracy of O(∆t2).
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Appendix B

Definitions

To apply a numerical method within a simulation, the results gained by using that method
should approximate the real solution closely. There exist some measurements for the quality
of a numerical method, namely stability, consistence and convergence. Among others, the
following definitions classify the methods used in Chapter 3.

Convergence of Numerical Methods

A fundamental theorem for the numerical solution of ODEs was developed by Peter Lax and
Robert D. Richtmeyer and can be easily extended to PDEs. In the following the theorem
itself and the necessary definitions will be given.

Theorem. Lax-Richtmeyer Theorem (Reißel, 2015, page 22)
A numerical method is convergent iff it is 0-stable and consistent. Furthermore, its order of
convergence equals its oder of consistence.

A proof of this theorem can be found for example in Quarteroni et al. (2010, page 41).
Therefore, a consistent method is convergent if it is 0-stable and a 0-stable method is conver-
gent if it is consistent. The zero-stability describes numerical methods that are not sensitive
to noisy input data.

Definition. Zero Stability (Reißel, 2015, page 21)
Given a general numerical method φ(∆t, t, y) approximating y′(t) = f(t, y) we can calculate
the solution and a noisy solution for the next time step by

yi+1 = φ(∆t, t, yi), y0 = y0, (B.1)

ỹi+1 = φ(∆t, t, ỹi) + ∆tδi+1, y0 = y0 + δ0. (B.2)

For

|δi| ≤ ε ∀i (B.3)

a method is called zero-stable if

∃∆t0 > 0 ∃cε > 0 : |yi − ỹi| ≤ cεε ∀i, ∀∆t ≤ ∆t0. (B.4)

�

Consistence describes the precision of the solution of a numerical method. In other words,
how accurate is the numerical approximation in comparison to the true solution. The order
of consistence defines the order of convergence.
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Definition. Consistence (Reißel, 2015, page 21)

Given the exact evolution Φ(∆t, t, y) = y(t) +
∫ t+∆t

t
f(τ, y(τ))dτ for y′(t) = f(t, y) , a

numerical approximation φ(∆t, t, y) is called consistent if

|Φ(∆t, t, y)− φ(∆t, t, y)| ∆t→0−−−→ 0. (B.5)

Furthermore, the order of consistence p is given by

|Φ(∆t, t, y)− φ(∆t, t, y)| = O(∆tp+1) (B.6)

�

Stability of Numerical Methods

Beside the previous mentioned zero stability there exist more precise definitions of stability.

Definition. Absolute Stability (Quarteroni et al., 2010, page 489)
We consider the linear Cauchy problem (or so called test problem){

y′(t) = λy(t), t > 0,

y(0) = 1
(B.7)

with λ ∈ C, whose solution is y(t) = eλt. As long as <(λ) < 0, lim
t→∞
|y(t)| = 0. A numerical

method for approximating the test problem (B.7) is absolutely stable if

|yn| tn→∞−−−→ 0. (B.8)

Let ∆t be the discretization stepsize. Therefore, the numerical solution of yn of (B.7)
depends on ∆t and λ and is not stable for all values of these parameters. The region of
absolute stability of the numerical method is defines as a subset of the complex plane

S = {z = ∆tλ ∈ C : (B.8) holds}. (B.9)

So S contains all values of the product ∆tλ for which the solutions of the numerical method
decay to zero as tn tends to infinity. �

A solution by a numerical method should behave similar to the real solution if it is
applied to the test problem (B.7), for different λ and all ∆t > 0. So the numerical method
should be applicable independent of ∆t. Since this strong requirement is not necessary for
all applications the stability region S (B.9) gives information about those λ which can be
represented by the method. The absolute stability can be classified even further.

Remark. A-Stability and L-Stability (Reißel, 2015, pages 64-68) A numerical method is
called A-stable if

C− = {z | z ∈ C,<(z) ≤ 0} ⊂ S, (B.10)

so if the stability region S (B.9) coincides with the left complex half plane. Furthermore, a
numerical method is called L-stable if it is A-stable and the solutions decay sufficiently fast
such that

yn
<(λ)→−∞−−−−−−→ 0. (B.11)
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Another definition of the L-Stability is the boundedness of the parameter λ

<(λ) <∞, ∆t→∞. (B.12)

�

So the L-stable methods are suitable for stiff (or rapidly decreasing) problems whereas
A-stable problems cannot represent the steep slope within the solution.
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Appendix C

Source Code

################################################################
# G E N E R A L I N F O #
# #
# This f i l e g i v e s h e l p i n g f unc t i on s , so implemented #
# equa t i on s taken from Stap l e t on2013 and Baxter1989 . The #
# r e l a t e d e qua t i on s are mentioned in the comments . #
################################################################
from numpy import sqrt, sinh, cosh, exp, pi
import logging, getopt, sys
from parameters import ∗

# Baxter1989 , (8 a )
# d imens i on l e s s i n t e r s t i t i a l p r e s su r e in i s o l a t e d tumor
#
# Parameters :
# r : cu r r en t r a d i a l p o s i t i o n (cm)
# R : rad iu s o f tumor (cm)
# a : d imens i on l e s s r a t i o o f v a s c u l a r to i n t e r s t i t i a l

↪→ p e rmea b i l i t y to f l u i d f l ow
def p hat(r, a):

if r==0:
return 1 − a / sinh(a)

r hat = r/R
return 1 − (sinh(a ∗ r hat) / (sinh(a) ∗ r hat))

# Baxter1989 , (8 a )
# i n t e r s t i t i a l p r e s su r e in i s o l a t e d tumor (mmHg)
#
# Parameters :
# phat : d imens i on l e s s i n t e r s t i t i a l p r e s su r e in i s o l a t e d tumor
# p e : e f f e c t i v e p r e s su r e (mmHg)
# p i n f : surround ing p r e s su r e (mmHg)
def p i(phat):

# Baxter1989 , (8 a )
# re tu rn phat ∗( p e − p i n f ) + p i n f
#### own cho i c e
return p imax∗phat
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# Baxter1989 , (8 b )
# d imens i on l e s s i n t e r s t i t i a l v e l o c i t y in i s o l a t e d tumor
#
# Parameters :
# r : cu r r en t r a d i a l p o s i t i o n (cm)
# R : rad iu s o f tumor (cm)
# a : d imens i on l e s s r a t i o o f v a s c u l a r to i n t e r s t i t i a l

↪→ p e rmea b i l i t y to f l u i d f l ow
def v hat(r, a):

if r==0:
return 0.

r hat = r/R
return (a ∗ r hat ∗ cosh(a ∗ r hat) − sinh(a ∗ r hat)) / ((

↪→ r hat ∗∗ 2) ∗ sinh(a))

# Baxter1989 , (8 b )
# i n t e r s t i t i a l v e l o c i t y in i s o l a t e d tumor (cm/ sec )
#
# Parameters :
# vha t : d imens i on l e s s i n t e r s t i t i a l v e l o c i t y in i s o l a t e d tumor
# R : rad iu s o f tumor (cm)
# K : h yd r au l i c c o n d u c t i v i t y (cm∗∗2/(mmHg ∗ sec ) )
# p e : e f f e c t i v e p r e s su r e (mmHg)
# p i n f : surround ing p r e s su r e (mmHg)
def v i(vhat):

return p imax∗ K t ∗ vhat / R

# Stap le ton2013 , a lpha ( as in (2) )
# shou ld be between 0 .5 and 150
# d imens i on l e s s r a t i o o f v a s c u l a r to i n t e r s t i t i a l p e rmea b i l i t y to

↪→ f l u i d f l ow
#
# Parameters :
# V : Volume
# f c : c a p i l l a r y f i l t r a t i o n c o e f f (1/(mmHg ∗ sec ) )
# K : h y d r au l i c c ondu c t i v i t y , i n t e r s t i t i a l p e rmea b i l i t y (cm

↪→ ∗∗2/(mmHg ∗ sec ) )
def alpha(V):

return V∗∗(1./3) ∗ sqrt(fc t/(K t ∗V))
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# f i r s t h a l f o f S tap l e ton2013 , (1)
#
# Parameters :
# r : cu r r en t r a d i a l p o s i t i o n (cm)
# V : Volume
# c : plasma concen t r a t i on o f t he nanopa r t i c l e
# f c : c a p i l l a r y f i l t r a t i o n c o e f f
# p v : v a s c u l a t u r e p r e s su r e (mmHg)
# phat : d imens i on l e s s i n t e r s t i t i a l p r e s su r e in i s o l a t e d tumor
# p r i : i n t e r s t i t i a l p r e s su r e in i s o l a t e d tumor (mmHg)
# sigma : f i l t r a t i o n r e f l e c t i o n c o e f f i c i e n t
def lambd(r, a, t):

phat = p hat(r, a)
pr i = p i(phat)
if (p v − pr i) <= 0.:

return 0.
return fc t ∗ (p v − pr i) ∗ (1 − sigma) ∗ c(t)

# Concentra t ion c l e a rance
#
# Parameters :
# k : l iposome c l e a rance r a t e
# Cp : i n i t i a l l i posome concen t r a t i on
# t : t ime
def c(t):

return Cp∗exp(−k∗t)

# Ab la t i on c o e f f i c i e n t ( Gasse lhuber2010 )
#
# Parameters :
# cu r r e n t l y cons tan t
def D(r, t):

return 3600∗6.7e−7 #cmˆ2/ s

# Temperature d i s t r i b u t i o n
#
# Parameters :
# r : cu r r en t normal i zed r a d i a l p o s i t i o n (cm)
def T(r, t):

if r==0:
r=0.00000001

return (20 − (20. ∗ sinh(3 ∗ r))/(r ∗ sinh(3)))∗exp(−k2∗t)+36
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# heat t r a n s f e r f un c t i on
#
# Parameters :
# T : tempera ture
def h(T):

if T <= 38:
return 0

elif T < 39:
return (37.6 ∗ T − 1428.8)/100

else:
return (1.76842105 ∗ T − 31.07368421)/100

################################################################
# #
# C A L C U L A T I O N C O D E #
# #
################################################################

# use Simpson r u l e
def integrate(u, t, r, Nr):

h = 1.∗R/Nr/3
I = 0.0
for i in range(1,int(Nr/2)):

I += u[2∗i−2,t]∗r[2∗i−2]∗∗2 + 4∗u[2∗i−1,t]∗r[2∗i−1]∗∗2 +
↪→ u[2∗i,t]∗r[2∗i]∗∗2

return I∗h∗4∗pi

# use Operator s p l i t t i n g as e x p l a i n e d in the t h e s i s to c a l c u l a t e
↪→ u and w

def getU(C0, Nr, tmin, tmax, al):
dr = 1.∗R/(Nr)
dt = dr
Ntau = 100
dtau = dt/Ntau

logging.info("dt = "+str(dt))
logging.info("Nt = "+str(Nt))
logging.info("dr = "+str(dr))
logging.info("Nr = "+str(Nr))
logging.info("alpha = "+str(al))

# d i v i d e r i n t o N e q u i d i s t a n t p o i n t s
r = numpy.linspace(0, R, Nr)
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# crea t e matr ix
u = numpy.zeros((Nr, Nt), dtype=numpy.float64)
#i n i t i a l i z e matr ix
u[:,0] = C0

# Upwind d i f f e r e n c i n g
# f o r adv e c t i on term : u t + f ∗ u x = 0
n = dtau/(dr)
m = f∗n
logging.info("m = "+str(m))

# speedup : c a l c u l a t e h and v
local h = numpy.zeros(Nr)
local v = numpy.zeros(Nr)

################################################################
# C O N C E N T R A T I O N L I P O S O M E S
################################################################

for t in range(Nt−1):
# in each time s t e p s o l v e System wi th Strang S p l i t t i n g
# Strang s p l i t t i n g : 0 .5A + B + 0.5A
un = numpy.zeros((Nr, Ntau), dtype=numpy.float64)
un[:,0] = u[:,t]
logging.info("t="+str(t))
logging.debug("Calculate u(r,t)")

for x in range(Nr):
local h[x] = h(T(r[x], (t+1)∗dt))
local v[x] = v i(v hat(r[x], al))

################################################################
# 0.5 EULER
################################################################

for tau in range (int(Ntau/2)−1):
for x in range(Nr):

it=100
error=1

#f i x po in t i t e r a t i o n f o r backward e u l e r
#i n i t i a l e u l e r s t e p
un[x,tau+1] = un[x,tau] + dtau∗(lambd(r[x], al,

↪→ tau)/Vr − h(T(r[x], t∗dt))∗(un[x,tau]))
while error > 1e−8:
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u n = un[x,tau] + dtau∗(lambd(r[x], al, t+tau
↪→ )/Vr − local h[x]∗(un[x,tau+1]))

error v = un[x, tau+1]−u n
error = numpy.sqrt(numpy.dot(error v ,error v)

↪→ )
un[x,tau+1] = u n
it−=1
if it < 0:

print("Too many iterations")
break

logging.debug("RK1 u")
# se t l a s t v a l u e as s t a r t v a l u e
un[:,0] = un[:,int(Ntau/2)−2]

################################################################
# 0.5 UPWIND
################################################################

for tau in range (int(Ntau/2)−1):
for x in range(1,Nr):

# chain r u l e
un[x,tau+1] = (1 − m∗local v[x])∗un[x,tau] + m∗

↪→ local v[x−1]∗un[x−1, tau]

logging.debug("DC2 u")

################################################################
# 0.5 UPWIND
################################################################

for tau in range(int(Ntau/2)−1, Ntau−1):
for x in range(1,Nr):

# chain r u l e
un[x,tau+1] = (1 − m∗local v[x])∗un[x,tau] + m∗

↪→ local v[x−1]∗un[x−1, tau]

logging.debug("DC2.2 u")
# se t l a s t v a l u e as s t a r t v a l u e
un[:,int(Ntau/2)−1] = un[:,Ntau−1]
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################################################################
# 0.5 EULER
################################################################

for tau in range(int(Ntau/2)−1, Ntau−1):
for x in range(Nr):

it=100
error=1

#f i x po in t i t e r a t i o n f o r backward e u l e r
#i n i t i a l e u l e r s t e p
un[x,tau+1] = un[x,tau] + dtau∗(lambd(r[x], al,

↪→ tau)/Vr − h(T(r[x], t∗dt))∗(un[x,tau]))
while error > 1e−8:

u n = un[x,tau] + dtau∗(lambd(r[x], al, t+tau
↪→ )/Vr − local h[x]∗(un[x,tau+1]))

error v = un[x, tau+1]−u n
error = numpy.sqrt(numpy.dot(error v ,error v)

↪→ )
un[x,tau+1] = u n
it−=1
if it < 0:

print("Too many iterations")
break

# se t nex t va l u e o f u
u[:,t+1] = un[:,−1]

logging.debug("RK1.2 u")

# f i x boundary
u[0,:] = u[1,:]

return u

def getW(u, w0, Nr, tmin, tmax, al):
dr = 1.∗R/(Nr)
dt = dr
Ntau = 100
dtau = dt/Ntau

logging.info("dt = "+str(dt))
logging.info("Nt = "+str(Nt))
logging.info("dr = "+str(dr))
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logging.info("Nr = "+str(Nr))
logging.info("alpha = "+str(al))

# d i v i d e r i n t o N e q u i d i s t a n t p o i n t s
r = numpy.linspace(0, R, Nr)
# crea t e matr ix
w = numpy.zeros((Nr, Nt), dtype=numpy.float64)
#i n i t i a l i z e matr ix
w[:,0] = w0
# Upwind d i f f e r e n c i n g
# f o r adv e c t i on term : w t + w x = 0
n = dtau/(dr)
m = f∗n
logging.info("m = "+str(m))

# speedup : c a l c u l a t e h , v and D
local h = numpy.zeros(Nr)
local v = numpy.zeros(Nr)
local D = numpy.zeros(Nr)

################################################################
# C O N C E N T R A T I O N D R U G
################################################################

for t in range(Nt−1):

# in each time s t e p s o l v e System wi th Strang S p l i t t i n g
# Strang s p l i t t i n g : 0 .5A + 0.5B + C + 0.5B + 0.5A
wn = numpy.zeros((Nr, Ntau), dtype=numpy.float64)
wn[:,0] = w[:,t]

for x in range(Nr):
local h[x] = h(T(r[x], t∗dt))
local v[x] = v i(v hat(r[x], al))
local D[x] = D(r[x], t∗dt)

logging.info("t="+str(t))
logging.debug("Calculate w(r,t)")

################################################################
# 0.5 INTEGRATION
################################################################

for tau in range (int(Ntau/2)−1):
for x in range(Nr):

wn[x,tau+1] = wn[x,tau] + beta∗local h[x]∗u[x,t
↪→ ]∗(dtau)
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logging.debug("RK1 w")
# se t l a s t v a l u e as s t a r t v a l u e

wn[:,0] = wn[:,int(Ntau/2)−2]

################################################################
# 0.5 UPWIND
################################################################

for tau in range (int(Ntau/2)−1):
for x in range(1,Nr):

# chain r u l e
wn[x,tau+1] = (1 − n∗local v[x])∗wn[x,tau] + n∗

↪→ local v[x−1]∗wn[x−1, tau]

logging.debug("DC2 w")

# se t l a s t v a l u e as s t a r t v a l u e
wn[:,0] = wn[:,int(Ntau/2)−2]

kappa = dtau/(2.0∗dr∗∗2)

################################################################
# CRANK NICOLSON
################################################################

for tau in range(1,Ntau):

temp = wn[:, tau−1] # ge t v a l u e s o f p r e v i ou s t ime
↪→ s t e p

b r = numpy.zeros((Nr), dtype=’float64’)
A = numpy.zeros((Nr,Nr), dtype=’float64’) # only

↪→ inner v a l u e s
for x in range(1,Nr−1):

A[x,x] = ( 1 + 2∗kappa∗local D[x] )
A[x, x+1 ] = −kappa∗local D[x+1]
A[x, x−1] = −kappa∗local D[x−1]
b r[x] = kappa∗local D[x+1]∗temp[x+1] + (1 − 2∗

↪→ kappa∗local D[x])∗temp[x] + kappa∗local D[x
↪→ −1]∗temp[x−1]

# use boundary v a l u e s
A[0,0] = ( 1 + 2∗kappa∗local D[0])
A[0, 1 ] = −kappa∗local D[1]
A[Nr−1,Nr−1] = ( 1 + 2∗kappa∗local D[Nr−1] )
A[Nr−1, Nr−2] = −kappa∗local D[Nr−2]
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# so l v e system o f e qua t i on s
wn new = numpy.linalg.solve(A,b r)

# save v a l u e s from t h i s t ime s t e p
wn[:, tau] = wn new

logging.debug("CN3 w")
# se t l a s t v a l u e as s t a r t v a l u e
wn[:,int(Ntau/2)−1] = wn[:,Ntau−1]

################################################################
# 0.5 UPWIND
################################################################

for tau in range(int(Ntau/2)−1, Ntau−1):
for x in range(1,Nr):

# chain r u l e
wn[x,tau+1] = (1 − n∗local v[x])∗wn[x,tau] + n∗

↪→ local v[x−1]∗wn[x−1, tau]

logging.debug("DC2.2")
# se t l a s t v a l u e as s t a r t v a l u e
wn[:,int(Ntau/2)−1] = wn[:,Ntau−1]

################################################################
# 0.5 INTEGRATION
################################################################

for tau in range(int(Ntau/2)−1, Ntau−1):
for x in range(Nr):

wn[x,tau+1] = wn[x,tau] + beta∗local h[x]∗u[x,t
↪→ ]∗(dtau)

# se t nex t va l u e o f w
w[:,t+1] = wn[:,Ntau−1]

# end o f t ime loop
w[0,:] = w[1,:]

return w
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